100,372 research outputs found

    Microwave emissions from snow

    Get PDF
    The radiation emitted from dry and wet snowpack in the microwave region (1 to 100 GHz) is discussed and related to ground observations. Results from theoretical model calculations match the brightness temperatures obtained by truck mounted, airborne and spaceborne microwave sensor systems. Snow wetness and internal layer structure complicate the snow parameter retrieval algorithm. Further understanding of electromagnetic interaction with snowpack may eventually provide a technique to probe the internal snow propertie

    Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    Get PDF
    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed

    The influence of gyroscopic forces on the dynamic behavior and flutter of rotating blades

    Get PDF
    The structural dynamics of a cantilever turbomachine blade mounted on a spinning and precessing rotor are investigated. Both stability and forced vibration are considered with a blade model that increases in complexity (and verisimilitude) from a spring-restrained point mass, to a uniform cantilever, to a twisted uniform cantilever turbomachine blade mounted on a spinning and precessing rotor are investigated. Both stability and forced vibration are considered with a blade model that increases in complexity (and verisimilitude) from a spring-restrained point mass, to a uniform cantilever, to a twisted uniform cantilever, to a tapered twisted cantilever of arbitrary cross-section. In every instance the formulation is from first principles using a finite element based on beam theory. Both ramp-type and periodic-type precessional angular displacements are considered. In concluding, forced vibrating and flutter are studied using the final and most sophisticated structural model. The analysis of stability is presented and a number of numerical examples are worked out

    Pickoff and spin-conversion quenchings of ortho-positronium in oxygen

    Get PDF
    The quenching processes of the thermalized ortho-positronium(o-Ps) on an oxygen molecule have been studied by the positron annihilation age-momentum correlation techinique(AMOC). The Doppler broadening spectrum of the 511 keV gamma-rays from the 2gamma annihilation of o-Ps in O_2 has been measured as a function of the o-Ps age. The rate of the quenching, consisting of the pickoff and the spin-conversion, is estimated from the positron lifetime spectrum. The ratio of the pickoff quenching rate to the spin-conversion rate is deduced from the Doppler broadening of the 511 keV gamma-rays from the annihilation of the o-Ps. The pickoff parameter ^1Z_eff, the effective number of the electrons per molecule which contribute to the pickoff quenching, for O_2 is determined to be 0.6 +- 0.4. The cross-section for the elastic spin-conversion quenching is determined to be (1.16 +- 0.01) * 10^{-19} cm^2.Comment: 4 pages with 5 eps figures, LaTeX2e(revtex4

    Energy Spectra and Energy Correlations in the Decay H→ZZ→μ+μ−μ+μ−H\to ZZ\to \mu^+\mu^-\mu^+\mu^-

    Full text link
    It is shown that in the sequential decay H→ZZ→(f1f1ˉ)+(f2f2ˉ)H\to ZZ\to (f_1\bar{f_1})+ (f_2\bar{f_2}), the energy distribution of the final state particles provides a simple and powerful test of the HZZHZZ vertex. For a standard Higgs boson, the energy spectrum of any final fermion, in the rest frame of HH, is predicted to be dΓ/dx∼1+β4−2(x−1)2d\Gamma /dx\sim 1+\beta^4-2(x-1)^2, with β=1−4mZ2/mH2\beta = \sqrt{1-4m^2_Z/m^2_H} and 1−β≤x=4E/mH≤1+β1-\beta \le x=4E/m_H\le 1+\beta . By contrast, the spectrum for a pseudoscalar Higgs is dΓ/dx∼β2+(x−1)2d\Gamma /dx \sim \beta^2+(x-1)^2. There are characteristic energy correlations between f1f_1 and f2f_2 and between f1f_1 and f2ˉ\bar{f_2}. These considerations are applied to the ``gold--plated'' reaction H→ZZ→μ+μ−μ+μ−H\to ZZ\to \mu^+\mu^-\mu^+\mu^-, including possible effects of CP--violation in the HZZHZZ coupling. Our formalism also yields the energy spectra and correlations of leptons in the decay H→W+W−→l+νll−νlˉH\to W^+W^-\to l^+\nu_ll^- \bar{\nu_l}.Comment: 14 pages + 4 figure

    Microwave emission from polar firn

    Get PDF
    The microwave emission from a half-space medium, characterized by coordinate dependent scattering and absorbing centers, was calculated by numerically solving the radiative transfer equation by the method of invariant imbedding. Rayleigh scattering phase functions and scattering induced polarization of the radiation were included in the calculation. Using the scattering and extinction data of polar firn the brightness temperature was calculated for the 1.55 cm wavelength. This study was the first quantitative comparison of the results of numerical calculation using the actual measured information of crystal size with the observed data

    The solar reflectance of a snow field

    Get PDF
    The radiative transfer equation was solved using a modified Schuster-Schwartzschild approximation to obtain an expression for the solar reflectance of a snow field. The parameters in the reflectance formula are the single scattering albedo and the fraction of energy scattered in the backward direction. The single scattering albedo is calculated from the crystal size using a geometrical optics formula and the fraction of energy scattered in the backward direction is calculated from the Mie scattering theory. Numerical results for reflectance are obtained for visible and near infrared radiation for different snow conditions. Good agreement was found with the whole spectral range. The calculation also shows the observed effect of aging on the snow reflectance

    The albedo of snow for partially cloudy skies

    Get PDF
    The input parameters of the model are atmospheric precipitable water, ozone content, turbidity, cloud optical thickness, size and shape of ice crystal of snow and surface pressure. The model outputs spectral and integrated solar flux snow reflectance as a function of solar elevation and fractional cloudcover. The model is illustrated using representative parameters for the Antarctic coastal regions. The albedo for a clear sky depends inversely on the solar elevation. At high elevation the albedo depends primarily upon the grain size; at low elevation this dependence is on grain size and shape. The gradient of the albedo-elevation curve increases as the grains get larger and faceted. The albedo for a dense overcast is a few percent higher than the clear sky albedo at high elevations. A simple relation between the grain size and the overcast albedo is obtained. For a set of grain size and shape, the albedo matrices (the albedo as a function of solar elevation and fractional cloudcover) are tabulated

    On the Angular Variation of Solar Reflectance of Snow

    Get PDF
    Spectral and integrated solar reflectance of nonhomogeneous snowpacks were derived assuming surface reflection of direct radiation and subsurface multiple scattering. For surface reflection, a bidirectional reflectance distribution function derived for an isotropic Gaussian faceted surface was considered and for subsurface multiple scattering, an approximate solution of the radiative transfer equation was studied. Solar radiation incident on the snowpack was decomposed into direct and atmospherically scattered radiation. Spectral attenuation coefficients of ozone, carbon dioxide, water vapor, aerosol and molecular scattering were included in the calculation of incident solar radiation. Illustrative numerical results were given for a case of North American winter atmospheric conditions. The calculated dependence of spectrally integrated directional reflectance (or albedo) on solar elevation was in qualitative agreement with available observations

    Two-stream theory of spectral reflectance of snow

    Get PDF
    Spectral reflectance of snow under diffuse illumination is studied using the two-stream approximation of the radiative transfer equation. The scattering and absorption within the snowcover due to the randomly distributed ice grains are characterized by the single scattering albedo and anisotropic phase function. Geometric optics calculations are used to relate the scattering and absorption parameters to grain size and density of snow. Analytical expressions for the intensity within the snowpack and the asymptotic flux extinction coefficient are also obtained. Good agreement is shown between the theory and available experimental data on visible and near-infrared reflectance and asymptotic flux extinction coefficient. The theory also may be used to explain the observed effect of aging on the snow reflectance
    • …
    corecore